
Git Workshop Testing
Release 0.0.1

Christoph Lange

Feb 18, 2021

BASIC GIT CONCEPTS

1 Creating a Repository 3
1.1 Create Project on GitLab . 3
1.2 Use Project Template . 4
1.3 Sync Local and Remote Repository . 4

2 Git Workflow 7
2.1 Idea . 7
2.2 Instructions . 7

3 Unit Tests 15
3.1 Idea . 15
3.2 Code of Conduct . 15

4 The Curse of Unit Tests 17
4.1 Reasons against Testing . 17
4.2 Benefits of Testing . 17

5 Continuous Integration 19
5.1 Idea . 19
5.2 Rules . 19

6 Refactoring 21
6.1 Idea . 21

7 Test Driven Development 23
7.1 Rules . 23
7.2 Benefits . 23
7.3 Disadvantages . 23

8 Task 0: Create a new repository 25

9 Task 1: Unit Tests 27
9.1 Understand the Function . 27
9.2 Extend a Unit Test . 27
9.3 Add a Second Unit Test . 27

10 Task 2: Refactoring 29
10.1 Rewrite function . 29

11 Task 3: TDD 31
11.1 Crop an Image . 31

i

11.2 Hints . 31

12 Indices and tables 33

ii

Git Workshop Testing, Release 0.0.1

Here are the basic git concepts that we covered in the last workshop

BASIC GIT CONCEPTS 1

Git Workshop Testing, Release 0.0.1

2 BASIC GIT CONCEPTS

CHAPTER

ONE

CREATING A REPOSITORY

Steps

• Creating a Repository

– Create Project on GitLab

– Use Project Template

– Sync Local and Remote Repository

The basic idea is to create a repo on the remote server. Then we create some content for the repository locally and
finally we want to sync this content to the remote server.

1.1 Create Project on GitLab

First of all you want to create a repository on GitLab/GitHub. Therefore, go to the URL of your GitLab Server,
i.e. https://git.tu-berlin.de/kiwi-git-workshops. Then you click on New Project and select Create blank project.
Afterwards you may choose a name for your repository

3

https://git.tu-berlin.de/kiwi-git-workshops

Git Workshop Testing, Release 0.0.1

and click Create project. Now we created an empty project on the remote server.

1.2 Use Project Template

Now we create a folder with some code on our local machine. Therefore we use a template via the following steps:

1. Open a terminal

2. Install the python package cookiecutter

pip3 install cookiecutter

3. Use cd to navigate to the directory that you want to start a repository.

cd path/to/your/git-projects

4. Create your python package with

cookiecutter https://github.com/spirousschuh/cookiecutter-git-workshop-testing

5. Specify the template parameter. Now you will see

author_name [Josephine Doe]:

This is a question. “What should be the name of the author?” and requires your input. You can either press
Enter, then the author_name is set to the default option Josephine Doe. Or you can enter another name.

6. Answer the questions that will be prompted to you or press Enter to choose the default value. You do not need
to reveal your real data, as it is a toy project anyway. But you could choose answers like these:

Pay attention at the third question. The answer to that question will be the name of the folder where you can
find your package later.

Now we created a folder of code locally.

1.3 Sync Local and Remote Repository

In this section we will syncronize our local folder with the remote git server. Right know they do not know about each
other.

1. Go the folder that you just created in the last step

cd my_image_package

The name of the folder corresponds to your answer to the question

package_name [git_workshop_testing]: my_image_package

4 Chapter 1. Creating a Repository

Git Workshop Testing, Release 0.0.1

2. Go back to your browser and open the remote server url (https://git.tu-berlin.de). Then go to the project that you
just created in the section Create Project on GitLab. As it is an empty project the landing page should look like
this:

3. Follow the step that are displayed under Git global setup (first red box) one by one, i.e. you copy each line to
your terminal and press Enter.

4. Follow the steps you find in the section Push an existing folder (second red box). You need to replace cd
existing_folder with the project-name you chose in step 6. In case you forgot the package name you can check
it with ls -l which displays the content of the current directory. (if you get an error like error: src refspec main
does not match any you need to replace main with master)

5. Install your new package in editable mode

pip install -e .

6. Go to your project webpage https://git.tu-berlin.de/your_name/your_project. When you see a basic
README.md file you succeeded.

1.3. Sync Local and Remote Repository 5

https://git.tu-berlin.de

Git Workshop Testing, Release 0.0.1

6 Chapter 1. Creating a Repository

CHAPTER

TWO

GIT WORKFLOW

2.1 Idea

This is a concise manual to a basic Git workflow. You can find more details here. For each step you can find instructions
how to follow that workflow using PyCharm. There is different ways to achieve the same goal without PyCharm. Once
you are familiar with the basic concepts you can use any tool you like.

2.2 Instructions

Once you have an idea what you want to achieve the following steps will help you to get there.

Steps

• Update Local

• Create Branch

• Add Commits

• Push Branch

• Merge Request

• Discussion

• Merge Branch

2.2.1 Update Local

First we want to make sure to use the newest version of the repositories main branch. Therefore we click on the
button in the bottom right corner next to the patlock. Then we see a context menue like this that displays all the local
branches.

7

https://guides.github.com/introduction/flow/

Git Workshop Testing, Release 0.0.1

Click on the main/master branch and choose “Checkout” in the second context menue to switch to the main/master
branch. Now we need to make sure that your local main/master branch is up to date with the upstream main/master.
Therefore we pull the newest state from upstream. In the upper left corner we can find the menue bar, click on “Git”
and choose pull in the pull down menue.

8 Chapter 2. Git Workflow

Git Workshop Testing, Release 0.0.1

2.2.2 Create Branch

Now we create a branch to implement our feature. In order to do so move your cursor to the buttom right corner and
click on your current branch name, which should be main/master, next to the patlock.

Within the context menue click on “New Branch” and enter a branch name that relates to your feature idea.

2.2.3 Add Commits

Now you need to add, change or delete some content in the repository to achieve your goal. For instance you want to
add a new file “Tasks.md”. Then you make a right click onto the folder that should contain your new file.

2.2. Instructions 9

Git Workshop Testing, Release 0.0.1

In the context menue select “new” and “File” and enter the filename in the consecutive prompt. Then PyCharm wants
to know if Git should look after your new file.

Normally that is a good idea and you shall choose “Add”.

10 Chapter 2. Git Workflow

Git Workshop Testing, Release 0.0.1

2.2.4 Push Branch

Now you want to push the branch with your changes to the upstream server. This way you create an identical copy of
your local branch on the server. To do so

go to the upper left corner where you can find the menue bar and click on Git and choose push in the pull down menue.

2.2.5 Merge Request

Now that you pushed your local branch to the upstream server, you want to create a merge request on the server.
Therefore open your browser and go to https://git.tu-berlin.de/your_name/your_project/. On the left hand side you
click on Merge Requests. Then you get to a page that looks like this:

Here click on Create merge request to create a request to merge your_branch (here: “basic_description”) into
main/master. Then you can add a description

2.2. Instructions 11

Git Workshop Testing, Release 0.0.1

and assign a reviewer. Finally submit you merge request.

2.2.6 Discussion

Now the reviewer of the merge request checks your changes and gives you feedback. After some discussion you might
want to go back to step 3 and add additional commits to change the current state. For the sake of practising some
interations in the workshop, you can just approve your own merge requests and continue.

2.2.7 Merge Branch

When all discussions are done and you are sure that your changes improve the main/master branch, it is time to merge
your branch by

12 Chapter 2. Git Workflow

Git Workshop Testing, Release 0.0.1

clicking on Merge.

Now master on the upstream server is newer than your local branch and its time to start all over again (Update Local).

Today we will learn how to write unit tests.

2.2. Instructions 13

Git Workshop Testing, Release 0.0.1

14 Chapter 2. Git Workflow

CHAPTER

THREE

UNIT TESTS

3.1 Idea

We want to test a unit of code to make sure it does what we expect, i.e.

def test_addition():
given
summands = [3, 2]

when
the_sum = sum(summands)

then
assert the_sum == 5

Main ingredience of a unit test

• test data

• the functionality you want to test

• meaningful assert statements

3.2 Code of Conduct

Some things to keep in mind when writing your unit tests.

Does Do nots
bring your own test data API calls
temporary files read test data from files
negative control mocks
self-sufficiency
focus on your own package

15

Git Workshop Testing, Release 0.0.1

16 Chapter 3. Unit Tests

CHAPTER

FOUR

THE CURSE OF UNIT TESTS

4.1 Reasons against Testing

There is a couple of “reasons” out there why people do not want to test their code

• my project is late

• do not touch my code it works

• my code is un-testable

• I just work on the project myself

No doubt testing your code is hard now, but working on non-tested code is much harder in the long term. Its kind of
an investment that will pay off in the future.

4.2 Benefits of Testing

How tested code makes your life easier:

• more certainty on how it works

• increases trustworthiness

• reduces technical depth

• documents the usage of your code

• puts yourself into your users’ shoes

• fosters good coding practices

• focus on your current task and forget about the rest of the code

• Be lazy! Let the computer do the checking.

Moreover we will deal with the most important concepts to use unit test for the sake of improve your code quality.

17

Git Workshop Testing, Release 0.0.1

18 Chapter 4. The Curse of Unit Tests

CHAPTER

FIVE

CONTINUOUS INTEGRATION

5.1 Idea

Continuous Integration is the traffic lights of software development. It checks the traffic for you, to see if you are good
to go. Therefore it automatically checks things like

• running all unit tests

• tries different system configurations

• checks coding conventions

You can extent the checks to whatever you like. When all checks ran successfully you get a green light.

5.2 Rules

For continuous integration to work properly, it is crucial to enforce the following rules

• the main / master branch is protected

• the only way to alter the main / master branch is a Merge Request

• Just merge when lights are green

Seting up CI for your repository is not straight forward. Therefore for today’s workshop it is enabled automatically, as
long as you created your repo in the right group (https://git.tu-berlin.de/kiwi-git-workshops).

For more information on how to setup CI, please take a look here https://docs.gitlab.com/ee/ci/introduction/.

19

https://git.tu-berlin.de/kiwi-git-workshops
https://docs.gitlab.com/ee/ci/introduction/

Git Workshop Testing, Release 0.0.1

20 Chapter 5. Continuous Integration

CHAPTER

SIX

REFACTORING

6.1 Idea

What is refactoring?

• rearranging your code

• does not change the functionality

Why shall we do it then?

• structure

• improves readability

• makes it easier to maintain

• might ease testing

So how does testing come into the picture? We want to be sure that the functionality does not change.

21

Git Workshop Testing, Release 0.0.1

22 Chapter 6. Refactoring

CHAPTER

SEVEN

TEST DRIVEN DEVELOPMENT

7.1 Rules

The idea behind test driven development is to start writing a test, before you do any coding. If you want to be strict
about it the following rules lead you to glory and honor.

• just write code to pass a failing unit test

• once the unit test passes you are not allowed to continue on the coding side

7.2 Benefits

• start coding from general apects to specifics

– What do I need?

– How does the interface look like?

– What are the parameters?

• focus on a small pieces (an iterative approach)

• issues do not accumulate

• ensures 100 % code coverage

7.3 Disadvantages

• works well on greenfield projects

• counter intuitive

Therefore we have a collection of tasks to practise the methodologies introduced above

23

Git Workshop Testing, Release 0.0.1

24 Chapter 7. Test Driven Development

CHAPTER

EIGHT

TASK 0: CREATE A NEW REPOSITORY

Similar to last time we want to create a new repository that we use for this workshop. Please note that we want to
create a repository in the group kiwi-git-workshops.

For step by step instructions on how to create a repository, you can take a look at the creating a Creating a Repository
page.

25

https://git.tu-berlin.de/kiwi-git-workshops

Git Workshop Testing, Release 0.0.1

26 Chapter 8. Task 0: Create a new repository

CHAPTER

NINE

TASK 1: UNIT TESTS

Please create a seperate branch for each of the sub-tasks and create a Merge Request every time. You can find detailed
instructions on the Git Workflow page.

9.1 Understand the Function

The repository that you created in task 0 mostly consists of two python files cli.py and processing.py. The file process-
ing.py contains a function called invert_image which is not properly tested.

Try to understand what it does.

If you want more clarity on how it works, it might be a good idea to take a look on a unit test. Try to find the unit test
that corresponds the invert_image function.

9.2 Extend a Unit Test

Now it is your job to change that. In the file tests/test_processing.py there is a function called
test_invert_image_one_pixel. This is a first basic unit test you can start with.

Do not forget to create a Merge Request and merge it.

9.3 Add a Second Unit Test

Now that we have one unit test for the function invert_image we want to check if it really works properly. Therefore
we want to write a another unit test.

In the file tests/test_processing.py there is a function called test_invert_image_two_pixel. Please use this function to
write a second unit test.

27

Git Workshop Testing, Release 0.0.1

28 Chapter 9. Task 1: Unit Tests

CHAPTER

TEN

TASK 2: REFACTORING

Please create a seperate branch for each of the sub-tasks and create a Merge Request every time. You can find detailed
instructions on the Git Workflow page.

10.1 Rewrite function

Now that we tested our function invert_image properly its time to refactor it.

Why do we want to do that? Well the package Pillow already has this functionality build-in. So there is no need to
implement it ourself.

Now it is your turn. Please try to find the invert functionality of Pillow and change the function invert_image such that
it uses the Pillow version of inverting an image.

29

https://pillow.readthedocs.io/en/stable/index.html

Git Workshop Testing, Release 0.0.1

30 Chapter 10. Task 2: Refactoring

CHAPTER

ELEVEN

TASK 3: TDD

Now we would like to implement something from scratch. Therefore it is the perfect opportunity to try some test
driven development.

11.1 Crop an Image

Your task is to implement a functionality that crops an image.

11.2 Hints

As we are doing TDD you need to start with the unit test. To keep things simple in the first place create a unit test in
test_processing.py.

Try to think of a very simple image and a very simple crop. You might want to copy some parts of the other unit test.

Once you have a first unit test for the pure cropping function, you can start with a unit test for the command line
interface. The command line interface can be found in cli.py. The unit test for it can be found in test_cli.py.

31

Git Workshop Testing, Release 0.0.1

32 Chapter 11. Task 3: TDD

CHAPTER

TWELVE

INDICES AND TABLES

• genindex

• search

33

	Creating a Repository
	Create Project on GitLab
	Use Project Template
	Sync Local and Remote Repository

	Git Workflow
	Idea
	Instructions

	Unit Tests
	Idea
	Code of Conduct

	The Curse of Unit Tests
	Reasons against Testing
	Benefits of Testing

	Continuous Integration
	Idea
	Rules

	Refactoring
	Idea

	Test Driven Development
	Rules
	Benefits
	Disadvantages

	Task 0: Create a new repository
	Task 1: Unit Tests
	Understand the Function
	Extend a Unit Test
	Add a Second Unit Test

	Task 2: Refactoring
	Rewrite function

	Task 3: TDD
	Crop an Image
	Hints

	Indices and tables

