

Welcome to Git Workshop Part 2 on Testing!

Here are the basic git concepts that we covered in the last workshop

Basic Git Concepts

	Creating a Repository
	Create Project on GitLab

	Use Project Template

	Sync Local and Remote Repository

	Git Workflow
	Idea

	Instructions

Today we will learn how to write unit tests.

Aspects of Testing

	Unit Tests
	Idea

	Code of Conduct

	The Curse of Unit Tests
	Reasons against Testing

	Benefits of Testing

Moreover we will deal with the most important concepts to use unit test for the
sake of improve your code quality.

Testing Concepts

	Continuous Integration
	Idea

	Rules

	Refactoring
	Idea

	Test Driven Development
	Rules

	Benefits

	Disadvantages

Therefore we have a collection of tasks to practise the methodologies introduced
above

Tasks

	Task 0: Create a new repository

	Task 1: Unit Tests
	Understand the Function

	Extend a Unit Test

	Add a Second Unit Test

	Task 2: Refactoring
	Rewrite function

	Task 3: TDD
	Crop an Image

	Hints

Indices and tables

	Index

	Search Page

Creating a Repository

Steps

	Creating a Repository

	Create Project on GitLab

	Use Project Template

	Sync Local and Remote Repository

The basic idea is to create a repo on the remote server. Then we create some
content for the repository locally and finally we want to sync this content to
the remote server.

Create Project on GitLab

First of all you want to create a repository on GitLab/GitHub. Therefore, go to
the URL of your GitLab Server, i.e.
https://git.tu-berlin.de/kiwi-git-workshops. Then you click on
New Project and select Create blank project. Afterwards you may choose a
name for your repository

[image: ../_images/new_project.png]
and click Create project.
Now we created an empty project on the remote server.

Use Project Template

Now we create a folder with some code on our local machine.
Therefore we use a template via the following steps:

	Open a terminal

	Install the python package cookiecutter

pip3 install cookiecutter

	Use cd to navigate to the directory that you want to start a repository.

cd path/to/your/git-projects

	Create your python package with

cookiecutter https://github.com/spirousschuh/cookiecutter-git-workshop-testing

	Specify the template parameter. Now you will see

author_name [Josephine Doe]:

This is a question. “What should be the name of the author?” and requires
your input. You can either press Enter, then the author_name is set to the
default option Josephine Doe. Or you can enter another name.

	Answer the questions that will be prompted to you or press Enter to choose
the default value. You do not need to reveal
your real data, as it is a toy project anyway. But you could choose answers
like these:

[image: ../_images/questions.png]
Pay attention at the third question. The answer to that question will be
the name of the folder where you can find your package later.

Now we created a folder of code locally.

Sync Local and Remote Repository

In this section we will syncronize our local folder with the remote git server.
Right know they do not know about each other.

	Go the folder that you just created in the last step

cd my_image_package

The name of the folder corresponds to your answer to the question

package_name [git_workshop_testing]: my_image_package

	Go back to your browser and open the remote server url
(https://git.tu-berlin.de). Then go to the project
that you just created in the section Create Project on GitLab.
As it is an empty project the landing page should look like this:

[image: ../_images/project_setup.png]

	Follow the step that are displayed under Git global setup (first red box)
one by one, i.e. you copy each line to your terminal and press Enter.

	Follow the steps you find in the section Push an existing folder
(second red box). You need to replace cd existing_folder with the
project-name you chose in step 6. In case you forgot the package name you
can check it with ls -l which displays the content of the current
directory.
(if you get an error like error: src refspec main does not match any you
need to replace main with master)

	Install your new package in editable mode

pip install -e .

	Go to your project webpage https://git.tu-berlin.de/your_name/your_project.
When you see a basic README.md file you succeeded.

Git Workflow

Idea

This is a concise manual to a basic Git workflow. You can find more details
here [https://guides.github.com/introduction/flow/]. For each step you can
find instructions how to follow that workflow using PyCharm. There is different
ways to achieve the same goal without PyCharm. Once you are familiar with the
basic concepts you can use any tool you like.

Instructions

Once you have an idea what you want to achieve the following steps will help you
to get there.

Steps

	Update Local

	Create Branch

	Add Commits

	Push Branch

	Merge Request

	Discussion

	Merge Branch

Update Local

First we want to make sure to use the newest version of the repositories main
branch. Therefore we click on the button in the bottom right corner next to the
patlock. Then we see a context menue like this that displays all the local
branches.

[image: ../_images/checkout_branch.png]
Click on the main/master branch and choose “Checkout” in the second context
menue to switch to the main/master branch.
Now we need to make sure that your local main/master branch is up to date with
the upstream main/master. Therefore we pull the newest state from upstream. In
the upper left corner we can find the menue bar, click on “Git” and choose pull
in the pull down menue.

[image: ../_images/git_pull.png]

Create Branch

Now we create a branch to implement our feature. In order to do so move your
cursor to the buttom right corner and click on your current branch name,
which should be main/master, next to the patlock.

[image: ../_images/create_new_branch.png]
Within the context menue click on “New Branch” and enter a branch name that
relates to your feature idea.

Add Commits

Now you need to add, change or delete some content in the repository to achieve
your goal. For instance you want to add a new file “Tasks.md”. Then you make a
right click onto the folder that should contain your new file.

[image: ../_images/new_file.png]
In the context menue select “new” and “File” and enter the filename in the
consecutive prompt. Then PyCharm wants to know if Git should look after your
new file.

[image: ../_images/add_to_git.png]
Normally that is a good idea and you shall choose “Add”.

Push Branch

Now you want to push the branch with your changes to the upstream server. This
way you create an identical copy of your local branch on the server. To do so

[image: ../_images/git_push.png]
go to the upper left corner where you can find the menue bar and click on Git
and choose push in the pull down menue.

Merge Request

Now that you pushed your local branch to the upstream server, you want to create
a merge request on the server. Therefore open your browser and go to
https://git.tu-berlin.de/your_name/your_project/. On the left hand side you
click on Merge Requests. Then you get to a page that looks like this:

[image: ../_images/merge_request.png]
Here click on Create merge request to create a request to merge your_branch
(here: “basic_description”) into main/master. Then you can add a description

[image: ../_images/merge_request2.png]
and assign a reviewer. Finally submit you merge request.

Discussion

Now the reviewer of the merge request checks your changes and gives you
feedback. After some discussion you might want to go back to step 3 and add
additional commits to change the current state. For the sake of practising
some interations in the workshop, you can just approve your own merge requests
and continue.

Merge Branch

When all discussions are done and you are sure that your changes improve the
main/master branch, it is time to merge your branch by

[image: ../_images/final_merge.png]
clicking on Merge.

Now master on the upstream server is newer than your local branch and its time
to start all over again (Update Local).

Unit Tests

Idea

We want to test a unit of code to make sure it does what we expect, i.e.

def test_addition():
 # given
 summands = [3, 2]

 # when
 the_sum = sum(summands)

 # then
 assert the_sum == 5

Main ingredience of a unit test

	test data

	the functionality you want to test

	meaningful assert statements

Code of Conduct

Some things to keep in mind when writing your unit tests.

	Does

	Do nots

	bring your own test data

	API calls

	temporary files

	read test data from files

	negative control

	mocks

	self-sufficiency

	

	focus on your own package

	

The Curse of Unit Tests

Reasons against Testing

There is a couple of “reasons” out there why people do not want to test their
code

	my project is late

	do not touch my code it works

	my code is un-testable

	I just work on the project myself

No doubt testing your code is hard now, but working on non-tested code is
much harder in the long term. Its kind of an investment that will pay off in
the future.

Benefits of Testing

How tested code makes your life easier:

	more certainty on how it works

	increases trustworthiness

	reduces technical depth

	documents the usage of your code

	puts yourself into your users’ shoes

	fosters good coding practices

	focus on your current task and forget about the rest of the code

	Be lazy! Let the computer do the checking.

Continuous Integration

Idea

Continuous Integration is the traffic lights of software development. It checks
the traffic for you, to see if you are good to go. Therefore it automatically
checks things like

	running all unit tests

	tries different system configurations

	checks coding conventions

You can extent the checks to whatever you like.
When all checks ran successfully you get a green light.

[image: ../_images/ci_pipeline.png]

Rules

For continuous integration to work properly, it is crucial to enforce the
following rules

	the main / master branch is protected

	the only way to alter the main / master branch is a Merge Request

	Just merge when lights are green

Seting up CI for your repository is not straight forward. Therefore for today’s
workshop it is enabled automatically, as long as you created your repo in the
right group (https://git.tu-berlin.de/kiwi-git-workshops).

For more information on how to setup CI, please take a look here
https://docs.gitlab.com/ee/ci/introduction/.

Refactoring

Idea

What is refactoring?

	rearranging your code

	does not change the functionality

Why shall we do it then?

	structure

	improves readability

	makes it easier to maintain

	might ease testing

So how does testing come into the picture? We want to be sure that the
functionality does not change.

Test Driven Development

Rules

The idea behind test driven development is to start writing a test, before
you do any coding. If you want to be strict about it the following rules lead
you to glory and honor.

	just write code to pass a failing unit test

	once the unit test passes you are not allowed to continue on the coding side

Benefits

	start coding from general apects to specifics

	What do I need?

	How does the interface look like?

	What are the parameters?

	focus on a small pieces (an iterative approach)

	issues do not accumulate

	ensures 100 % code coverage

Disadvantages

	works well on greenfield projects

	counter intuitive

Task 0: Create a new repository

Similar to last time we want to create a new repository that we use for this
workshop. Please note that we want to create a repository in the group
kiwi-git-workshops [https://git.tu-berlin.de/kiwi-git-workshops].

For step by step instructions on how to create a repository, you can take
a look at the creating a Creating a Repository page.

Task 1: Unit Tests

Please create a seperate branch for each of the sub-tasks and create a
Merge Request every time.
You can find detailed instructions on the Git Workflow page.

Understand the Function

The repository that you created in task 0 mostly consists of two python files
cli.py and processing.py. The file processing.py contains a function
called invert_image which is not properly tested.

Try to understand what it does.

If you want more clarity on how it works, it might be a good idea to take a
look on a unit test. Try to find the unit test that corresponds the
invert_image function.

Extend a Unit Test

Now it is your job to change that. In the file tests/test_processing.py there
is a function called test_invert_image_one_pixel. This is a first
basic unit test you can start with.

Do not forget to create a Merge Request and merge it.

Add a Second Unit Test

Now that we have one unit test for the function invert_image we want to
check if it really works properly. Therefore we want to write a another
unit test.

In the file tests/test_processing.py there is a function called
test_invert_image_two_pixel. Please use this function to write a second unit
test.

Task 2: Refactoring

Please create a seperate branch for each of the sub-tasks and create a
Merge Request every time.
You can find detailed instructions on the Git Workflow page.

Rewrite function

Now that we tested our function invert_image properly its time to refactor it.

Why do we want to do that? Well the package
Pillow [https://pillow.readthedocs.io/en/stable/index.html] already has this
functionality build-in. So there is no need to implement it ourself.

Now it is your turn. Please try to find the invert functionality of Pillow and
change the function invert_image such that it uses the Pillow version of
inverting an image.

Task 3: TDD

Now we would like to implement something from scratch. Therefore it is the
perfect opportunity to try some test driven development.

Crop an Image

Your task is to implement a functionality that crops an image.

Hints

As we are doing TDD you need to start with the unit test. To keep things simple
in the first place create a unit test in test_processing.py.

Try to think of a very simple image and a very simple crop. You might want to
copy some parts of the other unit test.

Once you have a first unit test for the pure cropping function, you can start
with a unit test for the command line interface. The command line interface
can be found in cli.py. The unit test for it can be found in test_cli.py.

Index

 _images/new_project.png
Create blank project

Create a blank project to house your files, plan
your work, and collaborate on code, among
other things.

New project > Create blank project

Project name
git-workshop-basic]|

Project URL Project slug
https:/gittwberln.de/ch.lange/ gitworkshop-basic

Want to house several dependent projects under the same namespace? Create a group.
Project description (optional)

Description format

Visibility Level @
© & Private

Project access must be granted explicity to each user. If this project s part of a group, access will be granted to members of the group.

@ Internal
The project can be accessed by any logged in user except external users.

@ Public
The project can be accessed without any authentication.

Initialize repository with a README
Allows you to immediately clone this project’s repository. Skip this if you plan to push up an existing repository.

Cancel

_images/project_setup.png
The repository for this project is empty
You can get started by cloning the repository or start adding fles to it with one of the following options

@ Newfile || B AddREADME || B AddLICENSE || @ Add CHANGELOG || [Add CONTRIBUTING | | @ Setup CI/CD

Command line instructions

You can also upload existing files from your computer using the instructions below.

Git global setup

git config --global user.name "ch.lange"
git config --global user.email "christoph.lange@tu-berlin.de"

Create a new repository

git clone git@git.tu-berlin.de:ch.lange/git-workshop-basic.git
cd git-workshop-basic

touch README.md

git add README.md

git commit -m "add README"

git push -u origin main

Push an existing folder

cd existing_folder
git init
git remote add origin git@git.tu-berlin.de:ch.lange/git-workshop-basic.git
git add .
git commit -m "Initial commit"

push -u origin main

cd existing_repo
git remote rename origin old-origin

git remote add origin git@git.tu-berlin.de:
git push -u origin
git push -u origin

h.lange/git-workshop-basic.git

_images/merge_request2.png
New Merge Request

From basic_description into master Change branches

Title basic package description

Start the title with Draft: or WIP: to prevent a merge request that s a work in progress from being merged before it's ready.
Add description templates to help your contributors communicate effectively!

Description Write Preview B I "< &

Achieved
- Ix] add a basic package description to the README

Markdown and quick actions are supported @ Attacha file

Assignee ch.lange

Reviewer chlange

Milestone Milestone

Labels Doing

Merge options Delete source branch when merge request is accepted.
‘Squash commits when merge request is accepted. @

_images/new_file.png
File Edit View Navigate Code Refactor Run Tools Git Window Help
cookiecutter-git-workshop-basics | i Recipe.md

‘ g Project ~
g (ookle(ul.lgrgl’_ B —
i = -t};x cenop X CUE Cirlix & New Scracch File
_J 2 git workshop o oy Ctrl+c ™ Directory
E Images Python Package
o B {fcookiecuttel Copy ity
AR teste [paste cerlev & Python File
" {{cookiecut Find Usages Altsshift+7 us HTMLFile
i %.gitignore Find in Files... ctrlsshiftsF ** EditorConfig File
wd H LICENSE ~ ReplaceinFiles.. CtrlsshiftsR i Resource Bundle
H s README.I Inspect Code...
t Asetup.py Refactor »
@ tox.ini Clean Python Compiled Files
©-gitignore Add to Favorites >
) cookiecutter.
= o Glossarymg Beformat Code ctri+albsL
- LICENSE Optimizelmports Ctrl+Alt+O
Makefile Openin >
s README.md Local History »
i Recipe.md Git >
) sample_pictui & Reload from Disk
i External Librari€_+ compare with... ctrlsD
" scratches and c¢ Mark Directory as »
Remove BOM
ﬁ ©) Create Gist..

— iEsetuppy © iclipy

Ctrl+Altsshift+insert

a conci
1ttps://
itructio
te to ex

Ingredience
PyCharm (ins
6it (install
repository (
Teature idea

R

Instructions

Once you have 2
to get there.

Sync Local

First we want t
branch. Therefa
patlock. Then
branches.

Checkout Brar

_static/file.png

_images/questions.png
(tmp1) christoph@christoph-Thinkpad-p53i~/letter to_uncle/tmp$ cookiecutter https://github.com/spirousschuh/cookiecutter-git-workshop-basics
You've downloaded /home/christoph/.cookiecutters/cookiecutter-git-workshop-basics before. Is it okay to delete and re-download it? [yes]: yes
author_name [Josephine Doe]: Christoph
author_email [your@address.eu]: mail@to.me
package_name [git_workshop_basic]: my_image_package
package_description [A lightweight python package to practise some git]: This package does simple image manipulations
package_url [https://git.tu-berlin.de/you/your_repo_name]: https://git.tu-berlin.de/ch.lange/my_image_package

(tmp1) christoph@christoph-ThinkPad-P53:~/letter_to_uncle/tmp$ [l

_static/minus.png

_static/plus.png

_images/git_pull.png
File Edit
cookiecutter-git-workshop-basics i Recipe.md

g = project + 2 Push... ctrhshurtln(I 2 ReADME
Ctrl+T
H cookiecutter-git-workshop-basics ~/qit_projects sB T I O
- tox Fetch # Rec.
. basic_from_github etd
£ git_workshop_basic 7. Merge... 14
s {icookiecutter.package_name}} Rebase...
< Lests P Branches.. Ctrlsshifts This
2 % test_clipy New Branch... Lhere
g {{cookiecutter.package_name}} New Tag... Tind
g init__py © Reset HEAD... feel
] % cli .
2 > cl-py i Show Git Log i In
t % .gitignore . N s
LICENSE Uncommitted Changes » * 61
#ix README.md Selected File » % re
% setup.py
i » * e
tox.ini GitHub
4 gitignore Manage Remotes... .
 cookiecutter json Clone...
i Glossary.md VCs Operations Al once
LICENSE to ge

Makefile
% README.md wn

_images/git_push.png
File Edit View Navigate Code Refactor Run Tools [feig Window Help
cookiecutter-git-workshop-basics | i Recipe.md

i = Project ~
2 kiecutter-git-workshop-basics ~/git_projects guECateHied s
£ cooklecutter-git-workshop-basics ~/qit_proj pull..
- tox
. qit_workshop_basic GEZD
€ images 7 Merge.
S # add_to_git.png Rebase.
= # checkout_branch.png Branches... ctrlsshifes
o # create_new_branch.png New Branch...
g # git_pullpng New Tag...
H & new _file.png © Reset HEAD...
3 & new_project.png I+ Show Git Log
I {{cookiecutter.package_name}} Patch >
Lests uUncommitted Changes >
{{cookiecutter.package_name}} pe——— .
% gitignore =
£ LICENSE GitHub »
& README.md Manage Remotes...
% setup.py Clone..
= tox.ini VCS Operations Alt+

_images/create_new_branch.png
Git Branches in cookiecutter-gitwor...

New Brangh
Checkout Tag or Revision...

Local Branches
© main origin/main >
Remote Branches

origin/main

_images/final_merge.png
basic package description

Overview 0 Commits 1 Changes 1

Achieved

add a basic package description to the README

19 Requesttomerge basic description [intomaster

B | Revoke approval | Merge request approved. Approved by &
©) Delete source branch

> 1 commit and 1 merge commit il be added to master. Modify merge commit

Open in Web IDE

Check out branch

_images/merge_request.png
chlange » gitworkshop-basic > Merge Requests

You pushed to basic_description 7 minutes ago

nav.xhtml

 Table of Contents

 		
 Welcome to Git Workshop Part 2 on Testing!

 		
 Creating a Repository

 		
 Create Project on GitLab

 		
 Use Project Template

 		
 Sync Local and Remote Repository

 		
 Git Workflow

 		
 Idea

 		
 Instructions

 		
 Update Local

 		
 Create Branch

 		
 Add Commits

 		
 Push Branch

 		
 Merge Request

 		
 Discussion

 		
 Merge Branch

 		
 Unit Tests

 		
 Idea

 		
 Code of Conduct

 		
 The Curse of Unit Tests

 		
 Reasons against Testing

 		
 Benefits of Testing

 		
 Continuous Integration

 		
 Idea

 		
 Rules

 		
 Refactoring

 		
 Idea

 		
 Test Driven Development

 		
 Rules

 		
 Benefits

 		
 Disadvantages

 		
 Task 0: Create a new repository

 		
 Task 1: Unit Tests

 		
 Understand the Function

 		
 Extend a Unit Test

 		
 Add a Second Unit Test

 		
 Task 2: Refactoring

 		
 Rewrite function

 		
 Task 3: TDD

 		
 Crop an Image

 		
 Hints

_images/checkout_branch.png
New Branch frorh Selected...
Checkout and Rebase onto Current

Comparewith Current GitBranches in cookiecutter-gitwor... S
'Show Diff with Working Tree Q
+New Branch
Rebase Current onto Selected Checkout Tag or Revision..
Mergeinto Current
Local Branches
Update . create-tasks »
Push...
Rename... Remote Branches

Delete L origin/main »

_images/ci_pipeline.png
-o- parents 8b9a05e3 28b0d3f2 Pmaster «
33 No related merge requests found

(©) Pipeline #8515 passed with stage ()in 3 minutes and 32 seconds

_images/add_to_git.png
Add File to Git

Do you want to add the following file to Git?
~/git_projects/cookiecutter-git-workshop-basics/Tasks.md

IFyou choose Cancel, you can still add it later manually.

Don'task again Cancel

